I. Solution

1.1 Let O be their centre of mass. Hence

\[MR - mr = 0 \]

……………………… (1)

\[m \omega_0^2 r = \frac{G M m}{(R + r)^2} \]

\[M \omega_0^2 R = \frac{G M m}{(R + r)^2} \]

……………………… (2)

From Eq. (2), or using reduced mass, \(\omega_0^2 = \frac{G(M + m)}{(R + r)^3} \)

Hence, \(\omega_0^2 = \frac{G(M + m)}{(R + r)^3} = \frac{GM}{r(R + r)^2} = \frac{Gm}{R(R + r)^2} \). ………………… (3)
1.2 Since μ is infinitesimal, it has no gravitational influences on the motion of neither M nor m. For μ to remain stationary relative to both M and m we must have:

$$\frac{GM\mu}{r_1^2}\cos\theta_1 + \frac{GM\mu}{r_2^2}\cos\theta_2 = \mu\omega^2_0\rho = \frac{G(M+m)\mu}{(R+r)^2}\rho$$ \hspace{1cm} \text{(4)}

$$\frac{GM\mu}{r_1^2}\sin\theta_1 = \frac{Gm\mu}{r_2^2}\sin\theta_2$$ \hspace{1cm} \text{(5)}

Substituting $\frac{GM}{r_1^2}$ from Eq. (5) into Eq. (4), and using the identity

$$\sin\theta_1 \cos\theta_2 + \cos\theta_1 \sin\theta_2 = \sin(\theta_1 + \theta_2),$$

we get

$$m\frac{\sin(\theta_1 + \theta_2)}{r_2^2} = \frac{(M+m)}{(R+r)^2}\rho \sin\theta_1$$ \hspace{1cm} \text{(6)}

The distances r_2 and ρ, the angles θ_1 and θ_2 are related by two Sine Rule equations

$$\frac{\sin\psi_1}{\rho} = \frac{\sin\theta_1}{R}$$

$$\frac{\sin\psi_1}{r_2} = \frac{\sin(\theta_1 + \theta_2)}{R+r}$$ \hspace{1cm} \text{(7)}

Substitute (7) into (6)

$$\frac{1}{r_2^3} = \frac{R}{(R+r)^2}\frac{(M+m)}{m}$$ \hspace{1cm} \text{(10)}

Since $\frac{m}{M+m} = \frac{R}{R+r}$, Eq. (10) gives

$$r_2 = R+r$$ \hspace{1cm} \text{(11)}

By substituting $\frac{Gm}{r_2^2}$ from Eq. (5) into Eq. (4), and repeat a similar procedure, we get

$$r_1 = R+r$$ \hspace{1cm} \text{(12)}

Alternatively,

$$\frac{r_1}{\sin(180^\circ - \phi)} = \frac{R}{\sin\theta_1} \quad \text{and} \quad \frac{r_2}{\sin\phi} = \frac{r}{\sin\theta_2}$$

$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{R \times r_2}{r \times r_1} = \frac{m \times r_2}{M \times r_1}$$

Combining with Eq. (5) gives $r_1 = r_2$.
Hence, it is an equilateral triangle with
\[\psi_1 = 60^\circ \]
\[\psi_2 = 60^\circ \] (13)

The distance \(\rho \) is calculated from the Cosine Rule.
\[\rho^2 = r^2 + (R+r)^2 - 2r(R+r) \cos 60^\circ \]
\[\rho = \sqrt{r^2 + rR + R^2} \] (14)

Alternative Solution to 1.2

Since \(\mu \) is infinitesimal, it has no gravitational influences on the motion of neither \(M \) nor \(m \). For \(\mu \) to remain stationary relative to both \(M \) and \(m \) we must have:

\[\frac{GM \mu}{r_1^2} \cos \theta_1 + \frac{Gm \mu}{r_2^2} \cos \theta_2 = \mu \omega^2 \rho = \frac{G(M+m)\mu}{(R+r)^3} \rho \] (4)

\[\frac{GM \mu}{r_1^2} \sin \theta_1 = \frac{Gm \mu}{r_2^2} \sin \theta_2 \] (5)

Note that
\[\frac{r_1}{\sin(180^\circ - \phi)} = \frac{R}{\sin \theta_1} \]
\[\frac{r_2}{\sin \phi} = \frac{r}{\sin \theta_2} \] (see figure)
\[\frac{\sin \theta_1}{\sin \theta_2} = \frac{R \times r_2}{r \times r_1} = \frac{m}{M} \times \frac{r_2}{r_1} \] (6)

Equations (5) and (6):
\[r_1 = r_2 \] (7)
\[\frac{\sin \theta_1}{\sin \theta_2} = \frac{m}{M} \] (8)
\[\psi_1 = \psi_2 \] (9)

The equation (4) then becomes:
\[M \cos \theta_1 + m \cos \theta_2 = \frac{(M+m)}{(R+r)^3} r_1^2 \rho \] (10)

Equations (8) and (10):
\[\sin (\theta_1 + \theta_2) = \frac{M+m}{M} \frac{r_2^2 \rho}{(R+r)^3} \sin \theta_2 \] (11)

Note that from figure,
\[\frac{\rho}{\sin \psi_2} = \frac{r}{\sin \theta_2} \] (12)
Equations (11) and (12): \[\sin(\theta_1 + \theta_2) = \frac{M + m}{M} \frac{r_1^2 r}{(R+r)^2} \sin \psi_2 \] (13)

Also from figure,
\[(R + r)^2 = r_1^2 - 2r_1 r_2 \cos(\theta_1 + \theta_2) + r_2^2 = 2r_1^2 \left[1 - \cos(\theta_1 + \theta_2) \right] \] (14)

Equations (13) and (14): \[\sin(\theta_1 + \theta_2) = \frac{\sin \psi_2}{2 \left[1 - \cos(\theta_1 + \theta_2) \right]} \] (15)

\[\theta_1 + \theta_2 = 180^\circ - \psi_1 - \psi_2 = 180^\circ - 2\psi_2 \] (see figure)
\[\therefore \cos \psi_2 = \frac{1}{2}, \psi_2 = 60^\circ, \psi_1 = 60^\circ \]

Hence \(M \) and \(m \) from an equilateral triangle of sides \((R + r) \)
Distance \(\mu \) to \(M \) is \(R + r \)
Distance \(\mu \) to \(m \) is \(R + r \)
Distance \(\mu \) to \(O \) is \[\rho = \sqrt{\left(\frac{R + r}{2} - R\right)^2 + \left(\frac{R + r}{2}\right)^2} = \sqrt{R^2 + Rr + r^2} \]

1.3 The energy of the mass \(\mu \) is given by

\[E = -\frac{GM \mu}{r_1} - \frac{Gm \mu}{r_2} + \frac{1}{2} \mu \left(\frac{d \rho}{dt} \right)^2 + \rho^2 \omega^2 \] (15)

Since the perturbation is in the radial direction, angular momentum is conserved \((r_1 = r_2 = R \text{ and } m = M)\),
\[E = -\frac{2GM \mu}{R} + \frac{1}{2} \mu \left(\frac{d \rho}{dt} \right)^2 + \frac{\rho_0^4 \omega_0^2}{\rho^2} \] (16)

Since the energy is conserved,
\[\frac{dE}{dt} = 0 \]
\[\frac{dE}{dt} = \frac{2GM \mu}{R^2} \frac{d\cal R}{dt} + \mu \frac{d \rho}{dt} \frac{d^2 \rho}{dt^2} - \mu \frac{\rho_0^4 \omega_0^2}{\rho^2} \frac{d \rho}{dt} = 0 \] (17)

\[\frac{d\cal R}{dt} = \frac{d \rho}{dt} \frac{\cal R}{\rho} = \frac{d \rho}{dt} \cal R \] (18)
\[\frac{dE}{dt} = \frac{2GM \mu}{\cal R^3} \rho \frac{d \rho}{dt} + \mu \frac{d \rho}{dt} \frac{d^2 \rho}{dt^2} - \mu \frac{\rho_0^4 \omega_0^2}{\rho^2} \frac{d \rho}{dt} = 0 \] (19)
Since \(\frac{d\rho}{dt} \neq 0 \), we have

\[
\frac{2GM}{R^3} - \frac{d^2\rho}{dt^2} - \frac{\rho_0^4 \omega_0^2}{\rho^3} = 0 \quad \text{or} \quad \frac{d^2\rho}{dt^2} = -\frac{2GM}{R^3} \rho + \frac{\rho_0^4 \omega_0^2}{\rho^3}.
\]

..........................(20)

The perturbation from \(R_0 \) and \(\rho_0 \) gives \(R = R_0 \left(1 + \frac{\Delta R}{R_0}\right) \) and \(\rho = \rho_0 \left(1 + \frac{\Delta \rho}{\rho_0}\right) \).

Then

\[
\frac{d^2\rho}{dt^2} = d^2(r_0 + \Delta r) = - \frac{2GM}{R_0^3} \rho_0 \left(1 + \frac{\Delta \rho}{\rho_0}\right) \left(1 + \frac{\Delta R}{R_0}\right) + \rho_0 \omega_0^2 \left(1 - \frac{3\Delta \rho}{\rho_0}\right).
\]

..........................(21)

Using binomial expansion \((1 + \varepsilon)^n \approx 1 + n\varepsilon\),

\[
\frac{d^3\Delta \rho}{dt^2} = - \frac{2GM}{R_0^3} \rho_0 \left(1 + \frac{\Delta \rho}{\rho_0}\right) \left(1 - \frac{3\Delta R}{R_0}\right) + \rho_0 \omega_0^2 \left(1 - \frac{3\Delta \rho}{\rho_0}\right).
\]

..........................(22)

Using \(\Delta \rho = \frac{R}{\rho} \Delta R \),

\[
\frac{d^3\Delta \rho}{dt^2} = - \frac{2GM}{R_0^3} \rho_0 \left(1 + \frac{\Delta \rho}{\rho_0} - \frac{3\rho_0 \Delta \rho}{R_0^2}\right) + \rho_0 \omega_0^2 \left(1 - \frac{3\Delta \rho}{\rho_0}\right).
\]

..........................(23)

Since \(\omega_0^2 = \frac{2GM}{R_0^3} \),

\[
\frac{d^3\Delta \rho}{dt^2} = - \omega_0^2 \rho_0 \left(1 + \frac{\Delta \rho}{\rho_0} - \frac{3\rho_0 \Delta \rho}{R_0^2}\right) + \omega_0^2 \rho_0 \left(1 - \frac{3\Delta \rho}{\rho_0}\right)
\]

..........................(24)

\[
\frac{d^3\Delta \rho}{dt^2} = - \omega_0^2 \rho_0 \left(4 - \frac{3\rho_0 \Delta \rho}{R_0^2}\right)
\]

..........................(25)

\[
\frac{d^3\Delta \rho}{dt^2} = - \omega_0^2 \Delta \rho \left(4 - \frac{9}{4}\right) = - \frac{7}{4} \omega_0^2 \Delta \rho.
\]

..........................(27)
Angular frequency of oscillation is $\frac{\sqrt{7}}{2} a_0$.

Alternative solution:

$M = m$ gives $R = r$ and $\omega_0^2 = \frac{G(M + M)}{(R + R)^3} = \frac{GM}{4R^3}$. The unperturbed radial distance of μ is $\sqrt{3}R$, so the perturbed radial distance can be represented by $\sqrt{3}R + \zeta$ where $\zeta << \sqrt{3}R$ as shown in the following figure.

Using Newton’s 2nd law, $-\frac{2GM\mu}{\{R^2 + (\sqrt{3}R + \zeta)^2\}^{3/2}}(\sqrt{3}R + \zeta) = \mu \frac{d^2}{dt^2}(\sqrt{3}R + \zeta) - \mu\omega^2(\sqrt{3}R + \zeta)$.

(1)

The conservation of angular momentum gives $\mu\omega_0(\sqrt{3}R)^2 = \mu\omega(\sqrt{3}R + \zeta)^2$.

(2)

Manipulate (1) and (2) algebraically, applying $\zeta^2 \approx 0$ and binomial approximation.

$$-\frac{2GM}{\{R^2 + (\sqrt{3}R + \zeta)^2\}^{3/2}}(\sqrt{3}R + \zeta) = \frac{d^2}{dt^2}(\sqrt{3}R + \zeta) - \frac{\omega_0^2 \sqrt{3}R}{(1 + \zeta / \sqrt{3}R)^3}$$

$$-\frac{2GM}{\{4R^2 + 2\sqrt{3}R\zeta\}^{3/2}}(\sqrt{3}R + \zeta) \approx \frac{d^2}{dt^2}(\sqrt{3}R + \zeta) - \frac{\omega_0^2 \sqrt{3}R}{(1 + \zeta / \sqrt{3}R)^3}$$

$$-\frac{GM\sqrt{3}R}{4R^3}(1 + \zeta / \sqrt{3}R) = \frac{d^2}{dt^2}(\sqrt{3}R + \zeta) - \frac{\omega_0^2 \sqrt{3}R}{(1 + \zeta / \sqrt{3}R)^3}$$

$$-\omega_0^2 \sqrt{3}R \left(1 - \frac{3\sqrt{3}\zeta}{4R}\right) \left(1 + \frac{\zeta}{\sqrt{3}R}\right) \approx \frac{d^2}{dt^2} - \omega_0^2 \sqrt{3}R \left(1 - \frac{3\zeta}{\sqrt{3}R}\right)$$

$$\frac{d^2}{dt^2} \zeta = -\left(\frac{7}{4} \omega_0^2\right) \zeta$$

1.4 Relative velocity

Let v = speed of each spacecraft as it moves in circle around the centre O.
The relative velocities are denoted by the subscripts A, B and C.
For example, v_{BA} is the velocity of B as observed by A.

The period of circular motion is 1 year $T = 365 \times 24 \times 60 \times 60$ s. \hspace{2cm} \cdots (28)
The angular frequency $\omega = \frac{2\pi}{T}$
The speed $v = \omega \frac{L}{2 \cos 30^\circ} = 575$ m/s \hspace{2cm} \cdots (29)
The speed is much less than the speed light \rightarrow Galilean transformation.

In Cartesian coordinates, the velocities of B and C (as observed by O) are

For B, $v_B = \cos 60^\circ \hat{i} - \sin 60^\circ \hat{j}$

For C, $v_C = \cos 60^\circ \hat{i} + \sin 60^\circ \hat{j}$

Hence $v_{BC} = -2\sin 60^\circ \hat{j} = -\sqrt{3}v \hat{j}$

The speed of B as observed by C is $\sqrt{3}v \approx 996$ m/s

Notice that the relative velocities for each pair are anti-parallel.

Alternative solution for 1.4

One can obtain v_{BC} by considering the rotation about the axis at one of the spacecrafts.

$v_{BC} = \frac{\omega L}{2\pi} = \frac{2\pi}{365 \times 24 \times 60 \times 60 \text{ s}} (5 \times 10^6 \text{ km}) \approx 996$ m/s