Theoretical Question 3: “Quantum effects of gravity”
Th.G. 3: “Quantum effects of gravity”. Classical description
Classically, the cavity behaves as a vertical velocity selector.
Classically, the cavity behaves as a vertical velocity selector.

1. Balls with high v_z will eventually hit the absorber:

$$|v_z(z)| < v_{\text{max}}(z)$$ (energy conservation)

Th. G. 3: “Quantum effects of gravity”. Classical description
Classically, the cavity behaves as a vertical velocity selector.

1. Balls with high v_z will eventually hit the absorber:
$$|v_z(z)| < v_{\text{max}}(z)$$ (energy conservation)

2. One up-down cycle is necessary in order to select velocities \rightarrow minimum time and length t_c, L_c

Th.9. 3: “Quantum effects of gravity”. Classical description
Classically, the cavity behaves as a vertical velocity selector.

1. Balls with high v_z will eventually hit the absorber:
 $$|v_z(z)| < v_{\text{max}}(z)$$
 (energy conservation)

2. One up-down cycle is necessary in order to select velocities \rightarrow minimum time and length t_c, L_c

3. Number of balls at D:
 $$N_c \propto \int_0^H dz \, 2v_{\text{max}}(z)$$

Th. 3: “Quantum effects of gravity". Classical description
Classically, the cavity behaves as a vertical velocity selector.

1. Balls with high v_z will eventually hit the absorber: $|v_z(z)| < v_{\text{max}}(z)$ (energy conservation)

2. One up-down cycle is necessary in order to select velocities \rightarrow minimum time and length t_c, L_c

3. Number of balls at D: $N_c \propto \int_0^H dz \, 2v_{\text{max}}(z)$

Th.G. 3: “Quantum effects of gravity”. Classical description
For neutrons \((mv_zH \sim h)\), the cavity behaves as an energy selector.

1. Balls with high \(v_z\) will eventually hit the absorber:
 \[|v_z(z)| < v_{\text{max}}(z) \]
 (energy conservation)

2. One up-down cycle is necessary in order to select velocities \(\rightarrow\) minimum time and length \(t_c, L_c\)

3. Number of balls at \(D\):
 \[N_c \propto \int_0^H dz \ 2v_{\text{max}}(z) \]

Th. 3: “Quantum effects of gravity”. Quantum description
For neutrons \((mvzH \sim h)\), the cavity behaves as an energy selector

1. Energy levels
 \[E_n = E_1 n^{2/3} \]
 (BS quantization rule — \textsc{Provided})

2. One up-down cycle is necessary in order to select velocities
 \[\rightarrow \text{ minimum time and length } t_c, L_c \]

3. Number of balls at \(D\):
 \[N_c \propto \int_0^H dz \ 2v_{\text{max}}(z) \]

\textit{Th. \textsc{Q.} 3: “Quantum effects of gravity”. Quantum description}
For neutrons \((mv_zH \sim h)\), the cavity behaves as an energy selector

1. Energy levels \(E_n = E_1 n^{2/3}\) (BS quantization rule — PROVIDED)

2. Time necessary to observe the first quantum level (Uncertainty relations: \(\Delta t \gtrsim h/\Delta E \gtrsim h/E_1\))

3. Number of balls at \(D\): \(N_c \propto \int_0^H dz \, 2v_{\text{max}}(z)\)

Th.9.3: “Quantum effects of gravity”. Quantum description
For neutrons \((mv_zH \sim h)\), the cavity behaves as an energy selector

1. Energy levels \(E_n = E_1 n^{2/3}\)

 (BS quantization rule — PROVIDED)

2. Time necessary to observe the first quantum level

 (Uncertainty relations: \(\Delta t \gtrsim h/\Delta E \gtrsim h/E_1\))

3. Number of neutrons at \(D\):

 \(N_q = \int_0^H dz \, I(z)\)

 (intensity proportional to (amplitude)²)

Th.G. 3: “Quantum effects of gravity”. Quantum description
Sketch of experimental data for neutron counting:

Only the first quantum sharp increase is analysed

Th.G. 3: "Quantum effects of gravity".
Sketch of experimental data for neutron counting:

Only the first quantum sharp increase is analysed

Th.G. 3: “Quantum effects of gravity”.
Sketch of experimental data for neutron counting:

Only the first quantum sharp increase is analysed

Th. 9. 3: “Quantum effects of gravity”.
Objective:

Compare classical and quantum predictions for neutrons in the Earth’s gravitational field.

Main references:

V. V. Nesvizhevsky et al.,

“(Measurement of) quantum states of neutrons in the Earth’s gravitational field”,

Precedent:

“Electron interference”

- 5th Iberoamerican Physics Olympiad, Jaca 2000, Spain
- 24th International Physics Olympiad, Williamsburgh 1993, U.S.A.

Th.9. 3: “Quantum effects of gravity”.
Concepts involved:

- Energy conservation
- Heisenberg’s uncertainty relations
- Energy levels of quantum systems
- Waves: intensity proportional to (amplitude)^2

Th.9. 3: “Quantum effects of gravity”.
36th International Physics Olympiad
Salamanca, Spain
3–12 July 2005

Theoretical Question 3:
“Quantum effects of gravity”