SOLUTION T3 : A Heavy Vehicle Moving on An Inclined Road

To simplify the model we use the above figure with $h_1 = h + 0.5 \ t$

$R_0 = R$

1. Calculation of the moment inertia of the cylinder

$R_i = 0.8 \ R_o$

Mass of cylinder part : $m_{cylinder} = 0.8 \ M$

Mass of each rod : $m_{rod} = 0.025 \ M$
2. Force diagram and balance equations:

To simplify the analysis we divide the system into three parts: frame (part 1) which mainly can be treated as flat homogeneous plate, rear cylinders (two cylinders are treated collectively as part 2 of the system), and front cylinders (two front cylinders are treated collectively as part 3 of the system).

Part 1: Frame

The balance equation related to the forces work to this parts are:

\[
I = \int r^2 dm = \int_{\text{cyl.shell}} r^2 dm + \int_{\text{rod1}} r^2 dm + \ldots + \int_{\text{rod n}} r^2 dm
\]

\[
\int_{\text{cyl.shell}} r^2 dm = 2\pi \int_{R_i}^{R_o} r^3 dr = 0.5\pi \pi (R_o^4 - R_i^4) = 0.5m_{\text{cylinder}} (R_o^2 + R_i^2)
\]

\[
= 0.5(0.8M)R^2 (1 + 0.64) = 0.656MR^2
\]

\[
\int_{\text{rod}} r^2 dm = \lambda \int_0^{R_{in}} r^2 dr = \frac{1}{3} \lambda R_{in}^3 = \frac{1}{3} m_{\text{rod}} R_{in}^2 = \frac{1}{3} 0.025M (0.64R^2) = 0.00533MR^2
\]

The moment inertia of each wheel becomes

\[
I = 0.656MR^2 + 8 \times 0.00533MR^2 = 0.7MR^2
\]

0.4 pts
Required conditions:

Balance of force in the horizontal axis

\[m_1 g \sin \Theta - f_{12h} - f_{13h} = m_1 a \] (1) 0.2 pts

Balance of force in the vertical axis

\[m_1 g \cos \Theta = N_{12} + N_{13} \] (2) 0.2 pts

Then torsion against O is zero, so that

\[N_{12}l - N_{13}l + f_{12h}h_1 + f_{13h}h_1 = 0 \] (3) 0.2 pts

Part two: Rear cylinder

\[f_2 \]

\[N_2 \]

\[f_{21h} \]

\[N_{21} \]

\[Mg \]

From balance condition in rear wheel:

\[f_{21h} - f_2 + Mg \sin \Theta = Ma \] (4) 0.15 pts

\[N_2 - N_{21} - Mg \cos \Theta = 0 \] (5) 0.15 pts

For pure rolling:

\[f_2 R = I\alpha_2 = I \frac{a_2}{R} \]

or \[f_2 = \frac{I}{R^2} a \] (6)

For rolling with sliding:

\[F_2 = u_k N_2 \] (7) 0.2 pts

Part Three: Front Cylinder:
From balance condition in the front wheel:

\[f_{31h} - f_3 + Mg \sin \theta = Ma \quad (8) \quad 0.15 \text{ pts} \]

\[N_3 - N_{31} - Mg \cos \theta = 0 \quad (9) \quad 0.15 \text{ pts} \]

For pure rolling:

\[f_3 R = I \alpha_3 = I \frac{a_3}{R} \]

or \[f_3 = \frac{I}{R^2} a \quad (10) \]

For rolling with sliding:

\[F_3 = u_k N_3 \quad (11) \]

3. From equation (2), (5) and (9) we get

\[m_1 g \cos \theta = N_2 - m_2 g \cos \theta + N_3 - m_3 g \cos \theta \]

\[N_2 + N_3 = (m_1 + m_2 + m_3) g \cos \theta = 7Mg \cos \theta \quad (12) \]

And from equation (3), (5) and (8) we get

\[(N_3 - Mg \cos \theta) l - (N_2 - Mg \cos \theta) l = h_1 (f_2 + Ma - Mg \sin \theta + f_3 + Ma - Mg \sin \theta) \]

\[(N_3 - N_2) = h_1 (f_2 + 2Ma - 2Mg \sin \theta + f_3) l \]

Equations 12 and 13 are given \textbf{0.25 pts}

\textbf{CASE ALL CYLINDER IN PURE ROLLING}

From equation (4) and (6) we get
\[f_{21h} = \left(I/R^2 \right) a + Ma - Mg \sin \theta \]
(14) 0.2 pts

From equation (8) and (10) we get
\[f_{31h} = \left(I/R^2 \right) a + Ma - Mg \sin \theta \]
(15) 0.2 pts

Then from eq. (1), (14) and (15) we get
\[5Mg \sin \theta - \left\{ \left(I/R^2 \right) a + Ma - Mg \sin \theta \right\} - \left\{ \left(I/R^2 \right) a + Ma - Mg \sin \theta \right\} = m_1 a \]

\[7 \text{Mg} \sin \theta = 2 \left(I/R^2 + 7M \right) a \]
\[a = \frac{7 \text{Mg} \sin \Theta}{7M + 2 \frac{I}{R^2}} = \frac{7 \text{Mg} \sin \Theta}{7M + 2 \frac{0.7MR^2}{R^2}} = 0.833 \text{g} \sin \Theta \]
(16) 0.35 pts

\[N_3 = \frac{7M}{2} g \cos \Theta + \frac{h_1}{l} \left[\left(M + \frac{I}{R^2} \right) \times 0.833 \text{g} \sin \Theta - Mg \sin \Theta \right] \]
\[= 3.5 \text{Mg} \cos \Theta + \frac{h_1}{l} \left[\left(M + 0.7M \right) \times 0.833 \text{g} \sin \Theta - Mg \sin \Theta \right] \]
\[= 3.5 \text{ Mg} \cos \Theta + 0.41 \frac{h_1}{l} Mg \sin \Theta \]

\[N_2 = \frac{7M}{2} g \cos \Theta - \frac{h_1}{l} \left[\left(\frac{I}{R^2} + M \right) \times 0.833 \text{g} \sin \Theta - Mg \sin \Theta \right] \]
\[= 3.5g \cos \Theta - \frac{h_1}{l} \left[(0.7M + M) \frac{7 \text{Mg} \sin \Theta}{0.7M + 7M} - 2Mg \sin \Theta \right] \]
\[= 3.5g \cos \Theta - 0.41 \frac{h_1}{l} Mg \sin \Theta \]

The Conditions for pure rolling:
\[f_x \leq \mu_s N_2 \quad \text{and} \quad f_y \leq \mu_s N_3 \]
\[\frac{I_2}{R_2^2} a \leq \mu_s N_2 \quad \text{and} \quad \frac{I_3}{R_3^2} a \leq \mu_s N_3 \]
0.2 pts

The left equation becomes
\[0.7M \times 0.833g \sin \theta \leq \mu_s (3.5 \text{Mg} \cos \Theta - 0.41 \frac{h_1}{l} Mg \sin \theta) \]
\[\tan \theta \leq \frac{3.5 \mu_s}{0.5831 + 0.41 \mu_s \frac{h_1}{l}} \]
While the right equation becomes

\[0.7m \times 0.833g \sin \theta \leq \mu_j (3.5mg \cos \theta + 0.41 \frac{h_i}{l} mg \sin \theta) \]

\[\tan \theta \leq \frac{3.5\mu_j}{0.5831 - 0.41\mu_j \frac{h_i}{l}} \]

(17)

0.1 pts

CASE ALL CYLINDER SLIDING

From eq. (4) \(f_{21h} = Ma + u_k N_2 - Mg \sin \theta \)
(18)

0.15 pts

From eq. (8) \(f_{31h} = Ma + u_k N_3 - Mg \sin \theta \)
(19)

0.15 pts

From eq. (18) and (19):

\[5Mg \sin \theta - (Ma + u_k N_2 - Mg \sin \theta) - (Ma + u_k N_3 - Mg \sin \theta) = ma \]

\[a = \frac{7Mg \sin \theta - \mu_k N_2 - \mu_k N_3}{7M} = g \sin \theta - \frac{\mu_k (N_2 + N_3)}{7M} \]

(20)

0.2 pts

\[N_3 + N_2 = 7Mg \cos \theta \]

From the above two equations we get:

\[a = g \sin \theta - \mu_k g \cos \theta \]

0.25 pts

The Conditions for complete sliding: are the opposite of that of pure rolling

\[f_{2} \mu_j N'_2 \] and \[f_{3} \mu_j N'_3 \]

\[\frac{1}{R_2^2} a \mu_j N'_2 \] and \[\frac{1}{R_3^2} a \mu_j N'_3 \]

(21)

0.2 pts

Where \(N_2' \) and \(N_3' \) is calculated in case all cylinder in pure rolling.

0.1 pts

Finally we get

\[\tan \theta \leq \frac{3.5\mu_j}{0.5831 + 0.41\mu_j \frac{h_i}{l}} \]

and \[\tan \theta \leq \frac{3.5\mu_j}{0.5831 - 0.41\mu_j \frac{h_i}{l}} \]

0.2 pts

The left inequality finally become decisive.

CASE ONE CYLINDER IN PURE ROLLING AND ANOTHER IN SLIDING CONDITION

{ For example \(R_3 \) (front cylinders) pure rolling while \(R_2 \) (Rear cylinders) sliding}
From equation (4) we get

\[F_{21h} = m_2 a + u_k N_2 - m_2 g \sin \theta \]

(22)

0.15 pts

From equation (5) we get

\[f_{31h} = m_3 a + (I/R^2) a - m_3 g \sin \theta \]

(23)

0.15 pts

Then from eq. (1), (22) and (23) we get

\[m_1 g \sin \theta - \{ m_2 a + u_k N_2 - m_2 g \sin \theta \} - \{ m_3 a + (I/R^2) a - m_3 g \sin \theta \} = m_1 a \]

\[m_1 g \sin \theta + m_2 g \sin \theta + m_3 \sin \theta - u_k N_2 = (I/R^2 + m_3) a + m_2 a + m_1 a \]

\[5Mg \sin \theta + Mg \sin \theta + Mg \sin \theta - u_k N_2 = (0.7M + M) a + Ma + 5Ma \]

\[a = \frac{7Mg \sin \theta - \mu_k N_2}{7.7M} = 0.9091 g \sin \theta - \frac{\mu_k N_2}{7.7M} \]

(24)

0.2 pts

\[N_3 - N_2 = \frac{h_i}{l} (\mu_k N_2 + \frac{I}{R^2} a + 2Ma - 2Mg \sin \Theta) \]

\[N_3 - N_2 = \frac{h_i}{l} (\mu_k N_2 + 2.7M \times 0.9091 g \sin \Theta - 2.7\mu_k N_2 / 7.7 - 2Mg \sin \Theta) \]

\[N_3 - N_2 (1 + 0.65\mu_k \frac{h_i}{l}) = 0.4546Mg \sin \Theta \]

\[N_3 + N_2 = 7Mg \cos \theta \]

Therefore we get

\[N_2 = \frac{7Mg \cos \Theta - 0.4546Mg \sin \Theta}{2 + 0.65\mu_k \frac{h_i}{l}} \]

\[N_3 = 7Mg \cos \Theta - \frac{7Mg \cos \Theta - 0.4546Mg \sin \Theta}{2 + 0.65\mu_k \frac{h_i}{l}} \]

(25)

0.3 pts

Then we can substitute the results above into equation (16) to get the following result

\[a = 0.9091 g \sin \theta - \frac{\mu_k N_2}{7.7M} = 0.9091 g \sin \theta - \frac{\mu_k 7g \cos \theta - 0.4546g \sin \Theta}{2 + 0.65\mu_k \frac{h_i}{l}} \]

(26)

0.2 pts
The Conditions for this partial sliding is:

\[f_2 \leq \mu_i N'_2 \quad \text{and} \quad f_3 \leq \mu_i N'_3 \]

\[\frac{1}{R^2} a \leq \mu_i N'_2 \quad \text{and} \quad \frac{1}{R^2} a \leq \mu_i N'_3 \] \hspace{1cm} (27) \hspace{1cm} 0.25 \text{ pts}

where \(N'_2 \) and \(N'_3 \) are normal forces for pure rolling condition

4. Assumed that after rolling \(d \) meter all cylinder start to sliding until reaching the end of incline road (total distant is \(s \) meter). Assumed that \(t_1 \) meter is reached in \(t_1 \) second.

\[v_{n1} = v_o + at_1 = 0 + a_1 t_1 \]

\[d = v_o t_1 + \frac{1}{2} a_1 t_1^2 = \frac{1}{2} a_1 t_1^2 \]

\[t_1 = \sqrt{\frac{2d}{a_1}} \] \hspace{1cm} 0.5 \text{ pts}

\[v_{n1} = a_1 \sqrt{\frac{2d}{a_1}} = \sqrt{2da_1} = \sqrt{2d0.833g \sin \Theta} = \sqrt{1.666dg \sin \Theta} \] \hspace{1cm} (28)

The angular velocity after rolling \(d \) meters is same for front and rear cylinders:

\[\frac{\omega_1}{R} = \frac{v_{n1}}{R} = \frac{1}{R} \sqrt{1.666dg \sin \Theta} \] \hspace{1cm} (29) \hspace{1cm} 0.5 \text{ pts}

Then the vehicle sliding until the end of declining road. Assumed that the time needed by vehicle to move from \(d \) position to the end of the declining road is \(t_2 \) second.

\[v_{t2} = v_{n1} + a_2 t_2 = \sqrt{1.666dg \sin \Theta} + a_2 t_2 \]

\[s - d = v_{n1} t_2 + \frac{1}{2} a_2 t_2^2 \]

\[t_2 = \frac{v_{n1} + \sqrt{v_{n1}^2 + 2a_2(s - d)}}{a_2} \] \hspace{1cm} (30) \hspace{1cm} 0.4 \text{ pts}

\[v_{t2} = \sqrt{1.666dg \sin \Theta} - v_{n1} + \sqrt{v_{n1}^2 + 2a_2(s - d)} \]

Inserting \(v_{n1} \) and \(a_2 \) from the previous results we get the final results.

For the angular velocity, while sliding they receive torsion:
\[\tau = \mu_c NR \]
\[\alpha = \frac{\tau}{I} = \frac{\mu_c NR}{I} \]

\[\omega_{r2} = \omega_{i2} + \alpha t_2 = \frac{1}{R} \sqrt{1.666 \, d \, g \, \sin \theta} + \frac{\mu_c NR - v_{i1} + \sqrt{v_{i1}^2 + 2a_2 (s - d)}}{a_2} \]

(31)

0.6 pts